Dataset: CTCF demarcates chromatin domains
Insulators are DNA elements, which prevent inappropriate interactions between the neighboring regions of the genome. They can be...
Insulators are DNA elements, which prevent inappropriate interactions between the neighboring regions of the genome. They can be functionally classified as either enhancer blockers or domain barriers. CTCF (CCCTC binding factor) is the only known major insulator binding protein in the vertebrates and has been shown to bind many enhancer-blocking elements. However, it is not clear whether it plays a role in chromatin domain barriers between active and repressive domains. Here, we used ChIP-Seq to map the genome-wide binding sites of CTCF in three cell types and identified significant binding of CTCF to the boundaries of repressive chromatin domains marked by H3K27me3. Although we find an extensive overlapping of CTCF binding sites across the three cell types, its association with the domain boundaries is cell type-specific. We further show that the nucleosomes flanking CTCF binding sites are well positioned and associated with histone H2AK5 acetylation (H2AK5ac). Interestingly, we found a complementary pattern between the repressive H3K27me3 and the active H2AK5ac regions, which are separated by CTCF. Our findings indicate that CTCF may play important roles in the barrier activity of insulators and provide a resource for further investigation of the CTCF function in organizing chromatin in the human genome. Examination of the role of CTCF in chromatin domain barrier function In addition to the ChIP-seq analysis, two replicates of HeLa expression data were studied.
- Species:
- human
- Samples:
- 2
- Source:
- E-GEOD-12889
- PubMed:
- 19056695
- Updated:
- Dec.12, 2014
- Registered:
- Sep.10, 2014