BioGPS
  • Home
  • Help
  • Plugins
  • Datasets
  • Sign Up
  • Login
Examples: Gene Symbol(s), Gene Ontology, Splicing plugins, Melanoma datasets
advanced
Home › Dataset Library › Oncogenic Activation Of FOXR1 by 11q23 Intrachromosomal Deletion-Fusions In Neuroblastoma

Dataset: Oncogenic Activation Of FOXR1 by 11q23 Intrachromosomal Deletion-Fusions In Neuroblastoma

[u'Neuroblastoma tumors frequently show loss of heterozygosity of chromosome 11q with a shortest region of overlap in the 11q23 region....

Registered by ArrayExpress Uploader
View Dataset

[u'Neuroblastoma tumors frequently show loss of heterozygosity of chromosome 11q with a shortest region of overlap in the 11q23 region. These deletions are thought to cause inactivation of tumor suppressor genes leading to haploinsufficiency. Alternatively, micro-deletions could lead to gene fusion products that are tumor-driving. To identify such events we analyzed a series of neuroblastomas by comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) arrays and integrated these data with Affymetrix mRNA profiling data with the bioinformatic tool R2 (', {u'a': {u'href': u'http://r2.amc.nl', u'target': u'_blank', u'$': u'http://r2.amc.nl'}}, u'). We identified three neuroblastoma samples with small interstitial deletions at 11q23, upstream of the forkhead-box transcription factor FOXR1. Genes at the proximal side of the deletion were fused to FOXR1, resulting in fusion transcripts of MLL-FOXR1 and PAFAH1B2-FOXR1. FOXR1 expression has only been detected in early embryogenesis. Affymetrix microarray analysis showed high FOXR1 mRNA expression exclusively in the neuroblastomas with micro-deletions and rare cases of other tumor types, including osteosarcoma cell line HOS. RNAi silencing of FOXR1 strongly inhibited proliferation of HOS cells and triggered apoptosis. Expression profiling of these cells and reporter assays suggested that FOXR1 is a negative regulator of forkhead-box factor mediated transcription. The neural crest stem cell line JoMa1 proliferates in culture conditional to activity of a MYC-ER transgene. Over-expression of the wild-type FOXR1 could functionally replace MYC and drive proliferation of JoMa1. We conclude that FOXR1 is recurrently activated in neuroblastoma by intrachromosomal deletion/fusion events, resulting in over-expression of fusion transcripts. Forkhead-box transcription factors have not been previously implicated in neuroblastoma pathogenesis. Furthermore, this is the first identification of intrachromosomal fusion genes in neuroblastoma. Time series Affymetrix U133p2 profiling of Osteosarcoma HOS cells transduced with FOXR1 targeted shRNAs or control shRNA']

Species:
human

Samples:
13

Source:
E-GEOD-29634

Updated:
Dec.12, 2014

Registered:
Sep.16, 2014


Factors: (via ArrayExpress)
Sample TRANSDUCED WITH HARVEST TIME POINT
GSM734406 No Virus 0h
GSM734407 FOXR1 B8 shRNA (B8) 48 hr
GSM734408 Control shRNA (SHC002) 72 hr
GSM734409 FOXR1 B4 shRNA (B4) 72 hr
GSM734410 FOXR1 B8 shRNA (B8) 72 hr
GSM7344 Control shRNA (SHC002) 16 hr
GSM734412 FOXR1 B4 shRNA (B4) 16 hr
GSM734413 FOXR1 B8 shRNA (B8) 16 hr
GSM734414 Control shRNA (SHC002) 24 hr
GSM734415 FOXR1 B4 shRNA (B4) 24 hr
GSM734416 FOXR1 B8 shRNA (B8) 24 hr
GSM734417 Control shRNA (SHC002) 48 hr
GSM734418 FOXR1 B4 shRNA (B4) 48 hr

Tags

  • cell
  • chromosome
  • crest
  • line
  • neural crest
  • neuroblastoma
  • nucleotide
  • osteosarcoma
  • proximal
  • stem cell

Other Formats

JSON    XML
  • About
  • Blog
  • Help
  • FAQ
  • Downloads
  • API
  • iPhone App
  • Email updates
© 2023 The Scripps Research Institute. All rights reserved. (ver 94eefe6 )
  • Terms of Use