BioGPS
  • Home
  • Help
  • Plugins
  • Datasets
  • Sign Up
  • Login
Examples: Gene Symbol(s), Gene Ontology, Splicing plugins, Melanoma datasets
advanced
Home › Dataset Library › A Prognostic Gene Expression Index in Ovarian Cancer

Dataset: A Prognostic Gene Expression Index in Ovarian Cancer

Ovarian carcinoma has the highest mortality rate among gynecological malignancies. In this project, we investigated the hypothesis that...

Registered by ArrayExpress Uploader
View Dataset

Ovarian carcinoma has the highest mortality rate among gynecological malignancies. In this project, we investigated the hypothesis that molecular markers are able to predict outcome of ovarian cancer independently of classical clinical predictors, and that these molecular markers can be validated using independent data sets. We applied a semi-supervised method for prediction of patient survival. Microarrays from a cohort of 80 ovarian carcinomas (TOC cohort) were used for the development of a predictive model, which was then evaluated in an entirely independent cohort of 118 carcinomas (Duke cohort). A 300 gene ovarian prognostic index (OPI) was generated and validated in a leave-one-out approach in the TOC cohort (Kaplan-Meier analysis, p=0.0087). In a second validation step the prognostic power of the OPI was confirmed in an independent data set (Duke cohort, p=0.0063). In multivariate analysis, the OPI was independent of the postoperative residual tumour, the main clinico-pathological prognostic parameter with an adjusted hazard ratio of 6.4 (TOC cohort, CI 1.8 – 23.5, p=0.0049) and 1.9 (Duke cohort, CI 1.2 – 3.0, p=0.0068). We constructed a combined score of molecular data (OPI) and clinical parameters (residual tumour), which was able to define patient groups with highly significant differences in survival. The integrated analysis of gene expression data as well as residual tumour can be used for optimised assessment of prognosis. As traditional treatment options are limited, this analysis may be able to optimise clinical management and to identify those patients that would be candidates for new therapeutic strategies. Keywords: disease state analysis RNA from 80 frozen ovarian cancer samples was analysed with oligonucleotide microarrays

Species:
human

Samples:
80

Source:
E-GEOD-14764

PubMed:
19294737

Updated:
Jan.17, 2015

Registered:
Jan.17, 2015


Factors: (via ArrayExpress)
Sample RESIDUAL TUMOR GRADE OVERALL SURVIVAL TIME FIGO STAGE HISTOLOGICAL TYPE OVERALL SURVIVAL EVENT
GSM368661 1 0.0 III 39 4 serous ovca 0
GSM368662 1 1.0 III 35 3c serous ovca 0
GSM368663 1 1.0 III 27 3b transitional cell ca 0
GSM368664 1 0.0 III 14 3c serous ovca 0
GSM368665 1 1.0 III 46 3c serous ovca 0
GSM368666 1 0.0 II 37 3c serous ovca 0
GSM368667 1 0.0 III 36 1a serous ovca 0
GSM368668 1 0.0 III 12 3c serous ovca 0
GSM368669 1 0.0 I 70 1a endometr ovca 0
GSM368670 1 0.0 III 35 3c serous ovca 0
GSM368671 1 1.0 III 54 3c serous ovca 0
GSM368672 1 0.0 III 68 3c endometr ovca 0
GSM368673 1 0.0 III 40 3c serous ovca 0
GSM368674 1 0.0 II 18 3c serous ovca 1
GSM368675 1 nan III 30 3c serous ovca 1
GSM368676 1 0.0 II 45 1a clear cell ovca 0
GSM368677 1 0.0 III 40 2b serous ovca 0
GSM368678 1 0.0 III 67 3c serous ovca 0
GSM368679 1 1.0 III 31 3c serous ovca 1
GSM368680 1 0.0 II 38 3c serous ovca 0
GSM368681 1 0.0 III 43 3c serous ovca 0
GSM368682 1 0.0 III 29 1c serous ovca 0
GSM368683 1 1.0 III 12 3c serous ovca 1
GSM368684 1 0.0 III 51 1c clear cell ovca 1
GSM368685 1 1.0 III 40 3c serous ovca 0
GSM368686 1 0.0 III 37 1a endometr, clear cell ovca 0
GSM368687 1 0.0 III 49 1b endometr ovca 0
GSM368688 1 0.0 III 36 1c endometr ovca 0
GSM368689 1 nan III 49 3c serous ovca 0
GSM368690 1 nan II 46 3c serous ovca 1
GSM368691 1 1.0 III 20 3c serous ovca 0
GSM368692 1 0.0 III 37 3c serous ovca 0
GSM368693 1 0.0 II 37 3b serous ovca 0
GSM368694 1 0.0 III 40 3b serous ovca 1
GSM368695 1 1.0 III 47 3c serous ovca 0
GSM368696 1 1.0 II 42 3b serous ovca 0
GSM368697 1 0.0 II 52 3c serous ovca 0
GSM368698 1 nan III 22 3c serous ovca 0
GSM368699 1 0.0 III 45 3c serous ovca 1
GSM368700 1 1.0 III 20 3c serous ovca 1
GSM368701 1 0.0 II 45 3c serous ovca 0
GSM368702 1 0.0 III 32 4 endometr ovca 0
GSM368703 1 0.0 III 49 3c serous ovca 0
GSM368704 1 1.0 II 15 3c serous ovca 0
GSM368705 1 1.0 II 43 3 serous ovca 1
GSM368706 1 0.0 I 73 3 serous ovca 0
GSM368707 1 0.0 III 53 3 serous ovca 1
GSM368708 1 1.0 I 38 3 serous ovca 1
GSM368709 1 0.0 III 51 3 serous ovca 0
GSM368710 1 1.0 III 55 3 serous ovca 1
GSM368711 1 0.0 II 27 3 serous ovca 1
GSM368712 1 1.0 III 7 3 endometr ovca 1
GSM368713 1 0.0 II 44 3 serous ovca 0
GSM368714 1 0.0 III 22 3 serous ovca 0
GSM368715 1 1.0 III 36 3 serous ovca 0
GSM368716 1 0.0 II 35 3 serous ovca 0
GSM368717 1 0.0 II 34 3 serous ovca 0
GSM368718 1 1.0 III 34 3 sarcomatoid 0
GSM368719 1 0.0 II 23 3 serous ovca 0
GSM368720 1 0.0 III 24 3 serous ovca 0
GSM368721 1 0.0 III 25 3 serous ovca 0
GSM368722 1 0.0 III 25 3 serous ovca 0
GSM368723 1 0.0 III 21 3 serous ovca 0
GSM368724 1 1.0 III 12 3 serous ovca 1
GSM368725 1 0.0 III 13 3 serous ovca 1
GSM368726 1 0.0 III 7 3 serous ovca 0
GSM368727 1 0.0 II 10 3 serous ovca 0
GSM368728 1 1.0 III 20 3 serous ovca 1
GSM368729 1 0.0 II 58 3 serous ovca 0
GSM368730 1 1.0 II 13 3 serous ovca 1
GSM368731 1 1.0 III 8 3 serous ovca 1
GSM368732 1 0.0 III 15 3 serous ovca 1
GSM368733 1 1.0 III 27 3 undifferentiated ovca 0
GSM368734 1 0.0 III 23 3 serous ovca 0
GSM368735 1 0.0 II 29 3 serous ovca 0
GSM368736 1 0.0 III 25 3 serous ovca 0
GSM368737 1 1.0 III 20 3 serous ovca 0
GSM368738 1 1.0 II 23 3 serous ovca 0
GSM368739 1 0.0 II 24 3 serous ovca 0
GSM368740 1 1.0 II 21 3 serous ovca 0

Tags

  • cancer
  • carcinoma
  • disease
  • ovarian cancer
  • ovarian carcinoma

Other Formats

JSON    XML
  • About
  • Blog
  • Help
  • FAQ
  • Downloads
  • API
  • iPhone App
  • Email updates
© 2025 The Scripps Research Institute. All rights reserved. (ver 94eefe6 )
  • Terms of Use